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INTRODUCTION

An abstract approach to the theory of spline interpolation has been
developed by several authors [1, 7, 8, 13, 18]. In particular Sard's theory of
optimal interpolation has been used to give a unified treatment of bivariate
interpolation methods [5, 6, 11] including the surface interpolation schemes
of Gordon [10].

In connection with an error analysis for abstract splines, an extension of
Sard's method has been considered which is characterized by an unbounded
hermitian operator associated with the quadratic functional of optimal
interpolation [4, 9].

In this paper the operator of abstract surface interpolation [5] will be
constructed. As an application, the hermitian operator associated with
Mangeron's equation [3] will be studied. Finally, Green's function of
Mangeron's operator is used to derive a representation formula for bivariate
splines with arbitrarily distributed interpolation points.

1. THE OPERATOR OF OPTIMAL INTERPOLATION

An optimal interpolation method is conveniently described by the notion
of a Sard system [8]

(X, Y, Z; U, F).

Here X, Y, Z are complex separable Hilbert spaces, and

(I.l)

U: X---+ Y, F: X -->- Z

are continuous linear mappings such that the completeness condition holds,
i.e., the scalar product in X may be written in the form

«x, y)) = (Ux, Uy) + (Fx, Fy).
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The orthogonal projector P of (X; ((,))) defined by

Ker P = Ker F (1.2)

is called the spline projector of (I. I) and solves the optimal interpolation
problem

Fs = Fx,

s c= Px <-,

US II = min Uy
Fx~Fy

(1.3)

In [9] a special class of interpolation processes has been considered:
The Sard system (X, Y, Z; U, F) is called an extended Sard system iff

Ker F is a dense and continuously imbedded linear subspace of Y:

Ker F ~~ Y,

I x!1 ~ Co I Ux I, (x E Ker F; Co :> 0).
(1.4)

Here and elsewhere :1 x il denotes II x liy (x E Ker F).
Then the operator Uo defined by

Dom Uo = Ker F,

is closed in Y, and we have [9]

Ux

THEOREM I. The operator A oc= Uo*Uo is the unique positive definite
hermitian operator in Y satisfying

Dom ACKer F,

(Ux, Uy) = (x, Ay) (x E Ker F, Y E Dom A).
(1.5)

A is called the energy operator of the extended Sard system (X, Y, Z; U, F).
In the terminology of Mikhlin [16, p. 17 ff]

H(x) = (Ux, Ux) (x E X)

is the quadratic functional associated with A since

H(x) = (x, Ax)

where x E Dom A. Mikhlin calls Z E X a weak solution of the "boundary
value" problem

iff
Az =0, Fz =Fx (XEX)

Fx = Fz, H(z) = min H(x - y).
Fy~O

(1.6)
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Mikhlin uses this variational concept of weak solution in the treatment of the
classical Dirichlet problem (cf. [16, p. 19]). Here we go in the reverse direction:
the weak solution is our starting point.

THEOREM 2. For any x E X the optimal interpolant s ofx is the unique weak
solution of

As == 0, Fs = Fx. (1.7)

Proof This follows immediately from (1.3).
Thus the concept of weak solvability is equivalent to the property of

optimal interpolation. For a "spline" treatment of harmonic functions see,
for instance, [8, 18].

2. ABSTRACT SURFACE INTERPOLATION

The method of abstract surface interpolation is based on two systems of
optimal interpolation [5]

(2.1)

and is characterized by the tuple

Here II and 12 are the identity mappings of Xl and X 2 and PI and P2 denote
the spline projectors of (2.1). The following Theorem 3 has been proved
in [5]:

THEOREM 3. Suppose that FI and F2 are normally solvable. Then

(2.3)

is the spline projector of surface interpolation (2.2).

An operator is called normally solvable if its range is closed. In this section
we will construct the operator of surface interpolation. First we need

LEMMA 1. The relation

(2.4)

is true.
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Proof The definition of the spline projector implies

Ker FI ~~ Ker PI = Im(II - PI)'

Ker F2 Ker P2 = ImUz - Pz),

Ker (}~ @ 12 X II @ F2) Ker B.
Since

the standard rules of tensor product [2] imply

Ker (FI @ 12 II @ Fz)

= rm (II @ 12 - B)

1m (/1 - PI) 1m (/2 - P 2)

c= Ker FI Ker F2 •

LEMMA 2. Suppose that

(2.5)

are extended Sard systems. Then

represents an extended Sard system, too.

Proof Note first that

Thus Lemma I implies

From

we can conclude

:1 Xl Ii ~ ('1 UlXl ::

il x2 11 ~ ('2 :1 U2x2 11

(Xl E Ker Fl ),

(X2 E Ker F2),

whence Lemma 2 is proved.
Let Al and A 2 be the energy operators of the systems (2.1). Then

(2.6)
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are bounded positive hermitian operators in Yl and Yz (cf. [21, p. 4821).
These operators satisfy

(Xl' Yl) = (UlXl , UlGlYl)

(Xz , Yz) = (Uzxz , UzGzyJ

(Xl E Ker Fl , Yl E Yl),

(Xz E Ker Fz , Yz E Yz).
(2.7)

Conversely, Gl and Gz are uniquely characterized by (2.7) and can be used
to construct Al and Az [16].

If Dom Al and Dom Az are equipped with the scalar products

(Xl' Yl) = (AlXl , AlYl),

(Xz , Y2) = (Azxz , AzYz),

they become Hilbert spaces, since Al and Az are closed operators. Then
Gl and Gz constitute toplinear isomorphisms having the continuous inverses

AI: Dom Al ->- Yl ,

Az: Dom Az ->- Yz .
(2.8)

Therefore Al (8) Az is well defined relative to the new topologies, and we can
state our main result.

THEOREM 4. The operator A defined by

Dom A = Dom Al (8) Dom A 2 ,

Ax = Al (8) Az(x)

is the energy operator of surface interpolation for (2.2).

(2.9)

Proof Note first that Lemma 2 implies the existence of the operator
of surface interpolation. Now

(2.10)

is a bounded hermitian operator in YI (8) Yz which satisfies

(Xl (8) Xz , Yl (8) Yz) = (UI (8) UZ(xl (8) xz), Ul (8) UZ(G(YI (8) Yz)))

(Xl E Ker FI , YI E YI ; Xz E Ker Fz , Yz E Yz).

Taking into account Lemma 1 and the definition of tensor product [2] we
obtain

(X, y) = (UI (8) Uz(X) , UI (8) Uz(Gy))

(x E Ker(FI (8) 12 X II (8) Fz), Y E YI (8) Yz),
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whence
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follows. Thus Theorem 3 is proved.
Now an application of Theorem 2 yields

THEOREM 5. For any x E Xl ® X2 the surface interpolant

satisfies

in the weak sense.

3. MANGERON'S OPERATOR

As an application we will apply the preceding results to blended linear
interpolation [3, 5]. Blended linear interpolation is based on linear inter­
polation which is described by the extended Sard system

(3.1 )

Here Wk(J) (J .•~ [0, I]) denotes the Sobolev space of function fE C,-I(J)

with DkfE LlJ); and EO ' EI are Dirac measures at the points O. ].
The operator A of linear interpolation is given by

Af~c-D2f,

Dom A = {IE W2(J) :f(O) fill O},

and the linear interpolant

tis) f(O)( 1- s) + f( 1).1'

is the unique solution of the boundary value problem

t(O) =,c flO), to) = f(1)·

Let R = J x J denote the unit square and R' • oR the boundary of R.
Further we use the notations

Wk.k(R) = Wk(J) ® Wk(J),

L 2(R) =~ L2(J) ® L 2(J),

DxkD,/ = Dk ® D",

fiR' = (Ie 0),/(', 1),f(O, '),/(1, ')).
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represents the (extended) Sard system of blended linear interpolation, and an
application of Theorem 4 yields

THEOREM 6. The operator A of blended linear interpolation is Mangeron's
operator:

Dom A = {fE W2.2(R) :fIR' = O},

Af = D,,2D,}(f).
(3.2)

From Theorem 5 we obtain for the case of blended linear interpolation

THEOREM 7. The blended linear interpolant offE Wl.l(R)

g(s, t) = f(O, 1)(1 - s) + f(1, t)s

+ f(s, 0)(1 - t) + f(s, l)t

- f(O, 0)(1 - s)(1 - t) - f(O. 1)(1 - s)t

- f(l, 0) s(1 - t) - f(l, 1) st

is the unique weak solution of the Dirichlet problem for M angeron's equation

(3.3)

Remark. It is well known that for a sufficiently smooth functionf E C 2•2(R)
the blended linear interpolant satisfies (3.3) in the usual sense (see [3, 10]
for further generalizations).

4 INTERPOLATION WITH GREEN'S FUNCTION

It is well known in the classical theory of splines that Green's functions
can be used to obtain representation formulas for splines [12]. It has been
indicated in [4, 9] that interpolation with Green's functions is possible in a
more abstract setting.

Suppose that B is a compact subset of IRm • Then C(B) denotes the Banach
space of complex-valued continuous functions equipped with maximum
norm topology

Ilflloo = max If(s)[.
SEB

It is further assumed that Ker F is a continuously imbedded subspace of
C(B), i.e., there is a positive constant M such that

Ilflloo :(; M II Ufll
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for any f E Ker F. Then Ker F possesses a reproducing kernel K(s, t) [15],
i.e., the relation

fU) (Uj; UK(', 1)) (4.1)

holds for any t E Band fE Ker F. For smoother functions fe: Dom A we
have [4, 9]:

f(t) (AI K(', t)).

Therefore K is the Green's function of A and the kernel of G:

Gh(t) (h. K(', t)) (t E B; Ii n. (4.2)

Let t1 , ... , tm E B be m distinct points such that the Dirac measures El, ..... Ei
m

are linear independent. Since K(-, t1) ..... K(', tm) are the representers of
El, ,... , Elm the following minimum norm problem is solvable (cf. [14, p. 65;
15, p. 114 ff]):

THEOREM 8. Let C1 , ... , (',,, be complex numbers. Among all jil/1ctions
fE Ker F satisfying

/(t,)

let 1] have the minimum norm

('.
I (i L .... Ill)

Then
'HI

TI(S) I biKes. t,)
'l,--1

where the coefficients satisfy

(4.3)

nl

I K(t j , til bi = Cj

i,---!

(j I, ... , 11/).

Let us first consider linear interpolation. In this case the Green's function

K(s, t) s(l- t) (.I' - 1)+

of the boundary value problem

(4.4)

-D2jcc g,

is the reproducing kernel of

f(O) f(l) 0

Ker(Eo x E1) .c {IE Wl(J) :f(O) f(l) 0;.
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The real numbers ti , ... , tm are supposed to satisfy

o< ti < t2 < ... < tm < 1.
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Then for any fE WJ-(J) with 1(0) = l(l) = 0 its optimal piecewise linear
interpolant TJ has the unique representation

m

TJ(s) = L b;(s(l - ti) - (s - ti)+).
i~I

Let us treat now blended linear interpolation. It follows from (4.2) and (2.10)
that the Green's function of Mangeron's operator

D.,2D,lf= g,

fiR' =0
has the form

K«s, t), (u, v» = (s(l - u) - (s - u)+)(t(1 - v) - (t - v)+). (4.5)

Now an application of Theorem 8 yields an interpolation process with the
aid of Green's function for Mangeron's equation.

THEOREM 9. Let (SI, tI), ... , (sm, tm) E R be m distinct points. Further let
CI ,..., Cm be complex numbers. Among all functions fE WJ-.I(R) satisfying

f(si' ti) == Ci (i = I, ... , m),

fiR' = 0,

let TJ have the minimum norm

II [D.,DyTJ(s, t)[2 ds dt :S;; II I D.,DJ(s, t)[2 ds dt.
R R

Then
m

TJ(S, t) = L bi[s(l - Si) - (s - Si)+][t(l - ti) - (t - ti)+]
i~I

where the coefficients satisfy

m

L bi[sll - Si) - (Sj -- si)+][tj(1 - ti) - (tj - ti)+] = Cj
i~I

(j = I, ... , m).

(4.6)

Remark. If the points (SI , t1), ... , (sm , tm) form a rectangular mesh then
TJ(s, t) is a bilinear spline function [20].
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Finally, it should be mentioned that the results stated for blended linear
interpolation can be extended easily to the higher order blending methods
as described in [3, 10J.
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